A Brief History of Construction Automation
By Mark Davis
It’s easy to think of robots and automated tools flying about a construction site as part of a far-out speculative future, but the reality is that strategies critical to the deployment of these tools have been in existence for millennia, and ideas of mechanized automated construction have been demonstrated for centuries. Early examples of off-site construction are spaced more than 2,000 years apart, from the prefabrication techniques used to build the Terracotta Army in third-century BCE China to the prefabricated panels assembled on-site for housing in Berlin in the 1920s.
Yet modern construction automation featuring robotics did not take off until after the first industrial robots were invented in the 1950s and the automotive industry put them to work in 1960s. Factory automation spread throughout the industrial world, and construction robotics began to surface in the 1960s and 1970s. Facing a construction-labor shortage due to an aging population and disinterested younger workers, Japan innovated construction automation and robotics in the 1970s and 1980s. Japanese architecture and engineering companies such as the Shimizu Corporation, Obayashi Corporation, and Takenaka Corporation created robots and remote-controlled machines for excavating, handling materials, placing and finishing concrete, fireproofing, earthworks, placing rebar, and other construction tasks.
The construction industry has been slow to develop and adopt automated processes. Today, however, a revitalization of construction automation is underway, assisted by collaboration among businesses, governments, and academia.
Beyond some examples that were driven largely by extreme perceived labor pressures—and in light of the steep initial investment, complexities of implementation, trade segregation, and lack of construction-specific tools—the construction industry has been slow to develop and adopt automated processes. Today, however, a revitalization of construction automation is underway, assisted by collaboration among businesses, governments, and academia. The robust data and sophisticated architectural-design and data-management possibilities coming from BIM (Building Information Modeling) and artificial intelligence–infused generative design approaches are combined with rapidly advancing robotics and Internet of Things (IoT) technologies to fuel construction’s digitalization and convergence with manufacturing techniques. Lower-cost hardware, combined with new workflows that link design-to-robotic fabrication workflows, afford new opportunities for the transfer of industrial robotics to the field of construction.
Read the entire article here at Autodesk Redshift